Group #7, Page #1

Papertrail (Encrypted File Storage using Paper Application)

Team #7: Benjamin Catts, Mohammad Qasimi, Hooman Moridzadeh, Sohal
Sudheer, and Connor Wadlin

Group #7, Page #2

Table of Contents
Preface: List of Figures 3
1: Introduction 4
1. 1: Problem StAteIMENL.ccoueitiiieieertert ettt ettt eb ettt sb et e bbbt et et e be et ettt ebe et nees 4
2: Use Cases..... 4
2.1 USEE INEETTACE. ..eneeeeee ettt h e sb e b e b et e et esbe e bt e bt embeenteeneeens 6
2.2: TS CASE SCOMATIOS. 1..veuteuteeuteeiteeieete et eitestteeateeateeatestteshtesaeesaeesseesbeesbtesheesseesbeesbtesbeesbeesseesseaseanseas 6
3: Requirements 6
3.1: Functional REQUITEIMENLS.cccverieriieiieiieieesieesee et et eteeteesbeeste e e esseesseessessseensesssesssesssesssennses 7
3.2: Usability REQUITEMENLS.cc.eeviiriieriieiiesie ettt eteereev e beeeteesressaessaesssesssesssessaesssesssasssesseessenns 7
3.3: Implementation REQUITEIMENTS.cccvieeeuieeitieeitieeiieesee ettt esteesereesveessseessseessseessseesssesassseessseessseenns 7
3.4 DEPENACIICIES. ...c.uveeeevieeeiieetie ettt ettt e ettt e stteesebeeeseeeteeessaeassasassaeesaeassseessseessseaassseansaeassseesseessseessseennns 8
4: Application Design 8
4.1: Application TechniCal SrUCLUTE.........c.cccviriiriiiierierierteree ettt re e reebeebeenreesseenseanseenns 8
4.2: User INterface BeRaVIOT.........couiiuiiieieiieeee ettt sttt et 10
4.3: Testing Procedure and RESUILS..........cccuiiiiiiiiiiie ettt et e eesv e e enneas 13
5: Conclusion 17
5.1: Comparison t0 COMPETIION. c..c..eruieuieiitieiieterterteettet ettt sttt et be st e bbbt et eseesbesbeeaeenees 17
5.2: Operational ChallENgEs.........c.cccvvivieiiieeiiiiisieeeeseesteste e st e seestee e esseesseesseesseesseessessseensesssesssenns 17
5.3: Concepts for FUture IMProvVemeEntSs.c.cccveevieiiriiiieeiesieeteeresreseesteeseresssessaeseaesseesseesssessessses 18
6: References 18

O BN 0015 T U (0 T [TSRS 18

Preface: List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Use Case Diagram

User Interface

Use Case Scenario
Package Diagram

Block Definition Diagram
Labelled User Interface
State Machine Diagram
Behavior Flow Chart

Group #7, Page #3

Group #7, Page #4

1: Introduction

For our project, we developed a secure way to take digital information and transform it
into an encrypted physical medium and back again. Regardless of the application, this program
allows users to take information from their electronic device and convert it into a QR code
containing their data in an encrypted form. This QR code can be run through the program later to
be unencrypted, so long as the password given is the same as during the encryption.

We set out to create a secure, simple, and smart way of taking information from a
computer into the real world and that is what we’ve done! Now you do not have to worry about
your personal information being stolen from your computer as you can keep all of your most
important information in a physically secure place, like a lockbox in a bank.

1.1: Problem Statement

Some people have a desperate need to back up small amounts of sensitive data long-term
and wish to do so securely. In the modern age, encrypting documents with important personal
information such as bank information, passwords, and such has become a critical aspect of
keeping your information safe, yet there are not many ways to do this. This is where we come in,
as we offer a way to keep all of your most important information safe in an easy-to-use and
simple-to-store manner. All you have to do is take your document, run it through the program,
download the generated QR code, and print it out!

2: Use Cases

As our application is designed with ease of use in mind, users are only expected to be
familiar with locating a file within their computer, printing files from a computer, and scanning
QR codes. No need to spend years studying computers, this application does all of the hard work
for you!

This application works in both Windows and Linux environments, so as long as the user
has one of those types of devices it should work perfectly.

Group #7, Page #5

"uc [Model] Model [SYST 230 Use Case])

PaperTrail

-

Y

@ ikl v w

Figure 1: Use Case Diagram

Group #7, Page #6

2.1: User Interface

PaperTrail

Encrypt

Select a file to encrypt: Select a scan to decrypt:
Choose File | Mo file chosen Choose File Mo file chosen

Encryption Password (12 characters minimum}; Decryption Password:

Figure 2: User Interface

2.2: Use Case Scenarios

Group #7, Page #7

‘_] Generale QR code

usear FaparTrail
Apphcation

| |

| |

| [

ey | T
|2d Encryption /| Give Password

B bﬂ:]ﬁ anarata Kay
|

|

| I

| |

! Give File !

lIJ < [Encrypt using Key
| T

|

|

|

|

|

Provide QR Code T

g T

=d ecryphion ;

|
|
Give Password .,,1

]L’.—‘- enerate Key

‘ Decrypl using Key

Send QR Codea

Display Dacryptad Data

I#I‘\""""""""'

-
|
|
|
|
|
|
]

Figure 3: Use Case Scenario

3: Requirements

We have broken down our requirements into multiple categories to make everything as
clear as possible regarding what this application does.

Functional requirements are the processes that the program must be able to do. Functions
such as encryption, decryption, key generation, and more are included in this section.

Group #7, Page #8

Usability requirements are the aspects of the application with which the user can interact
with. Being able to input a file, type in a password, and more are included in this section.

Implementation requirements are the technical backends required for the application to
run properly. Having the proper version of Python, being able to run HTML, and such are
included in this section.

Dependencies are parts of the code that are required for the application to run properly.
There are a variety of libraries brought in to perform specific tasks that are included in this
section.

3.1: Functional Requirements

- Able to turn files into password-encrypted data encoded in a series of QR codes exported
in an easily printable format

- Able to, using a scan of the series of QR codes in the easily printable format mentioned in
the previous requirement, be able to decode the QR codes back into data that can then be
decrypted with the same password

- The program can take in any standard binary or ASCII file data

- Ifafile is encrypted and turned into a printable format by the program and then that
printable-format file is run through the program, scanned, and decrypted, the data
returned must be binary equivalent to the original file

3.2: Usability Requirements

- Has both encryption and decryption options available to the user

- Has clear instructions such that a user can easily tell the functionality of the program
- This means that a user can visually tell what actions are required, not an actual
instructions manual

- User can select a file from their file explorer using the provided button without having to
trace the whole path

- An encrypted file with the QR code will be provided to the user and it will be clear when
this has been done through a visual representation via a new window pop-up

- User can select a QR code and have the data scanned such that decryption can occur
using the provided password

- A downloadable file will be provided to the user once decryption is finished using the
correct password through a pop-up message.

- Any errors throughout the program will be made known to the user through a visual
representation

3.3: Implementation Requirements

Group #7, Page #9

- Platforms: Windows [Windows 11 x86 64], Linux [Fedora Silverblue x86 64 (uses GNU
libe)]
- Language(s):
- Python 3.9
- HTML/CSS
- Javascript

3.4: Dependencies

- Eel (PyPI) (Docs) - UI framework, allows Ul to be written in HTML/CSS/JS while still
operating offline

- qrcode (PyPI) (Docs) - Allows us to generate QR codes

- pillow (PyPI) (Docs) - Adds more functionality to qrcode, lets us work with
image data to combine codes onto one nicely formatted page, and allows for
export as PDF

- cryptography (PyPI) (Docs) - A high-level library for encrypting and decrypting
data, can be used to encrypt data using Fernet symmetric encryption, also contains
PBKDF2HMAC for turning user-provided password into Fernet keys

- base64 (builtin) - A way to encode binary data into ASCII characters, a necessary
dependency for key derivation from the encryption password

- pyinstaller (PyPI) (Docs) - Allows the application to be packaged as a standalone
executable so that end users don’t need Python installed or to run the program
from the command line

4: Application Design

During the creation of the application, design was something we wanted to ensure was as
easy for people to use as possible while still accomplishing all of our tasks. As different aspects
of the overall design were handled in different ways, we have chosen to break up the overall
design into multiple components.

The first section regards the technical backend, in which we detail the dependencies,
files, and functions of the application. This can be seen in Figures 4 and 5, in which we illustrate
what makes up the application and what each part does.

The second section regards the Ul and what the user should expect to see during the use
of the application. This is illustrated in many ways, including Figure 6 where we show off the UI
and its features, Figures 7 and 8 with how the application works based on user input, and our
extensive table of tests regarding the functionality of the program.

4.1: Application Technical Structure

Our GUI imports three different objects, the OS library, the Tkinter library, and our PaperTrail
driver file. Our driver file imports many other libraries and our PaperTrail document file to encrypt and

https://pypi.org/project/Eel/
https://pypi.org/project/Eel/
https://pypi.org/project/qrcode/
https://pypi.org/project/qrcode/
https://pypi.org/project/pillow/
https://pillow.readthedocs.io/en/stable/
https://pypi.org/project/cryptography/
https://cryptography.io/en/latest/
https://pypi.org/project/pyinstaller/

Group #7, Page #10

decrypt based on our user’s request. Our document file imports some other libraries, but this time to
generate the PDFs and other background work required to allow the user to access their files. The GUI
keeps everything simple so that the user can just get what they want done without having to deal with the

extra work.

pkg [Architecture Management] Architecture Management[5 PaperTrail Imports]J —‘
o gmpors s base6s
|
| -
| — o _wmeorts cryptography.fernet
|
I |]
<blocks L _ _ “mer> o cryptography.primitives.kdf.pbkdfz.PBKDF2HVMAC
r—-— — — — papertraildriver.py
I
| |
[I -
| | eaching Q pdfZimage.convert_from_path *‘
«blocks |‘"m|’°'t’° F——— = — = = > PIC.Image
papertrail_gui.py I - . |
«imports
BT ——— TR oo oo -
I | o lp— - — - — @mports .| cryptography.fernet
| |
| | | 'l
| ¥ | fpdf.FPDF
| | «blocke «imports
| papertraildlocumentpy | — — — — — — — — — — — — >
| .) \ . _ _ _ _ _ _dmports
: ‘Klmpm i | ‘ — dmportaf N
| | 2 gimports I qrcode
| - - - - - - - - = -1
aimports| —‘ | . l
' «imports N + zbar.pyzbar.decode
| _ 4 tkntr | - - - C T T — > Pyzbarpyzbar.
- |
| |
| v JL\
| friendlywords fpdf.Align
S 0s

The body of our application is broken into three main blocks based on the three files we

Figure 4: Package Diagram

use to perform the required tasks. As this application was designed with ease of use in mind,
each of the blocks simply flow from one to another to process all of the different aspects
required to provide the user with the safety they desire. Within each block is a list of the
important functions that occur within, which helps to further illustrate what each block does and
how they come together to create the finished file.

Group #7, Page #11

bdd E[Archr(écture I:’u‘lanagement] Archrter.fture Ma:nagem:ent[% Paper:Tral\ BBD]J

«interfaceBlocks
papertrial_gui.py

__add_w idgets{)
select_file_encryptio()
select_file_decryption()
validate_pass_encryption()
validate_pass_decryption()
bind_theme()
submit_encrypt()
submit_decrypt()

cinterfaceBlocks
papertraildriver

encrypt{)

decrypt()
_derve_key

ablocks
papertraildocument

encrypt()
decrypt()
get_data()
get_document()
get_designator()
gen_qr()
gen_pdf()
_split_data()
_dec_chunk
_enc_chunk
_get_image
_read_gr_from_images

Figure 5: Block Definition Diagram

4.2: User Interface Behavior

We have created a labeled version of our UI that shows the main screen as well as some
of the smaller pop-up windows the user may encounter. On the main screen, we have buttons that
allow the user to select a file, either for encryption or decryption. Once the user has selected a
file using one of the provided buttons, there is a text box below used to type in the password that
will be used for encryption or decryption respectively. Once a file has been chosen and a
password has been entered, there are buttons that the user can click to simply encrypt or decrypt
the provided file using the provided password.

Below the main window are three different pop-up windows. The first two on the left
illustrate successful encryption and decryption respectively, while the rightmost one shows the
error screen. The error screen is the same for encryption and decryption, with the only difference
being the text regarding whether the file could not be encrypted or decrypted. All three of these
windows have an “OK” button used to close the window as well as an “X” in the top right
corner.

Group #7, Page #12

Data Entry Window

PaperTrail

Encrypt Decrypt
on select_file_button_decryption
Select a file to encrypt Select a scan to decrypt (urites to dec_fp)

Select File Select File

Encryption Password (12 characters minimum): Decryption Password (12 characters minimum):
password_entry_encryption paSSL'IO}‘d,entry,decryptjon
(writes to enc_pass) (writes to dec_pass)
encrypt_button decrypt_button

select_file_button_encrypti
(urites to enc_fp)

Encryp‘tion Success De_cmlp‘tior\ Success Ecror
Dialo \ Dialo
9 Dlalog J

Encrypted Successfully! Error X

Decrypted Successfully!

Something went wrong and the file
couldn't be decrypted!

9 Document has been saved to
/var/home/human/Downloads/papertrail
_Snow-Resonance-Compilation.pdf.

(=)

9 Data has been saved to
/var/home/human/Downloads/banner.

Error:
list index out of range

decryption_dest
encryption_dest

Dismisses DIalosI

Figure 6: Labelled User Interface

Ilustrated below are the different states that the application goes through during normal
operations. First, the application is launched and the main window is opened. This starts the Data
Entry Mode, in which data can be input by a user. This state will remain until a call to encrypt or
decrypt is made. If a call to encrypt a file is made, the application moves into Encryption Mode
and performs the relevant tasks within. Depending on the outcome of the encryption, a message
either stating the success or failure of the encryption will be provided as the application moves
back into the Data Entry Mode. If a call to decrypt is made instead, a very similar process occurs
as encryption, in which the Decryption Mode will start and all relevant tasks within are done.
Again, depending on the outcome of the decryption, a message either stating the success or
failure of the decryption will be given as the application moves back into the Data Entry Mode.
This can occur however many times the user wants until the application is closed, in which the
application no longer can do anything and will shut down.

stm [state machine] PaperTrail GUI Operational Models [PaperTrail GUI Operational Models]}

Application Launch

Group #7, Page #13

Data Entry Mode

[decrypt_success_dialog or error_dialog dismissed]

Decryption Mode

encrypt_button pressed

entry / add_widgets

[enc_fp not empty and enc_pass length = 12]

Decryption Success

do / decrypt_success_dialog
~— —

do / driver.decrypt
Decryption Failure

do / error_dialog

Encryption Mode

[dec_fp not empty and dec_pass length > 12]

decrypt_button pressed

Encryption Success

Encrypting Data

do / driverencrypt

do / encrypt_success_dialog
~

Encryption Failure

do / error_dialog

[encrypt_success_dialog or error_dialog dismissed]

Figure 7: State Machine Diagram

Group #7, Page #14

Below is a flow chart of what a user may expect to see as they use the application. It is
very similar in description to the previous diagrams, as the screens the user sees are the different
states and messages displayed after returning to the Data Entry Mode.

Data Entry Window

PaperTrail

Encrypt Decrypt

Select a file to encrypt: Select a scan to decrypt:

Select File Select File

Encryption Password (12 characters minimum): Decryption Password (12 characters minimum):

/ =3

Dialo. Dia\los,
il A
Dism?sseci) DlSwnssed
Encrtlp‘tlor\ Started Dearyption Started
é Dia[os <>
Dismissed
Encrypt on—" \Encm/ fon o sSe Decm/\o‘tion/ “Decryption
Succeeded Fm Fauiled Succeeded

Encrypted Successfully! Error x

Decrypted Successfully!

Something went wrong and the file

9 Document has been saved to
couldn't be decrypted!

) 9 Data has been saved to
/var/home/human/Downloads/papertrail

/var/home/human/Downloads/banner.

De_cryp't ion Success

_Snow-Resonance-Compilation.pdf.

Error:
list index out of range

(&

Encrt/p't‘on Success

|0\l03 Error IO\[O?

:Dio\log
Figure 8: Behavior Flow Chart

4.3: Testing Procedure and Results

We created a vigorous and extensive set of tests to ensure that our program did everything
we expected it to do. While not all tests were successful, these tests were based on previous
requirements that were no longer to be upheld due to technical limitations, such as the ability to
decrypt a file using an incorrect password and have it generate a file. Tests were created through
a thorough investigation of the code, diagrams, and previous documentation to ensure that all
functions, requirements, and features were working as intended. The tests were carried out on
multiple different devices to ensure all features worked across operating systems. Adjustments
were made after the tests were completed to ensure accuracy in what we are providing as a
service, as we did not want to mislead anyone with outdated claims.

Group #7, Page #15

State | Functio | Description of | Expected Outcomes | Actual Outcomes | Comments (if | Test Results
n test (before execution) (after execution) applicable) (PAass or

Data Select Useris able to | Can select a file and | Successfully able to | Works fine PASS
Input | File select a file and | the selected file is select file and have
Mode have it be the used it be used

one used
Data Select User can select | Any standard binary | Couldn’t find a Works fine PASS
Input | File any sort of or ASCII file can be | filetype that would
Mode standard binary | selected and used cause any problems

or ASCII file
Data | Type User can type | Allows for any Takes any Works fine PASS
Input | Passwor | in the box any | combination of characters in a
Mode |d amount of characters to be a string 12 or longer

characters password so long as | and uses itasa

equal to or they are equal to or password

above 12. above 12 characters

total

Data Type Generates an Gives an error and Does give the error | Works fine PASS
Input | Passwor | error if the makes the user put in | we were expecting
Mode |d password is a longer password

less than 12

characters long
Destin | File User can select | User can locate a file | File goes to the Works fine PASS
ation location | the location of | location and the file | chosen file location
Selecti where they will go there
on want their file

to go and the

file actually

goes there
Destin | Name User can File generated should | It works fine, -
ation file choose to be PDF after the user | however. The
Selecti change the changes the name generated name
on generated name saved as a PDF file

to any filename but when I changed

so long as it fits
their OS’s file
syntax

the name of the file
it saved as a plain
file without any
specific type
doc,pdf..etc

Group #7, Page #16

Encryp | Encrypti | User chosen Encrypted file when [Gives you a bunch [Great, works PASS
tion/ |[on file is actually | open using a text of weird symbols fine
Decry encrypted and | editor is not that are not
ption unable to be human-readable human-readable
converted into (did actually
plaintext encrypt the file)
without use of
decryption
Encryp | Decrypti | User chosen Password given for Decryption does not | Generates an -
tion/ |[on file can be decryption should work without typing | error message
Decry decrypted decrypt the file into the same password
ption regardless of [human-readable text | as was used for
password into encryption
human-readabl
e text
Encryp | Decrypti | User-chosen When given the same | Gives the same Decrypted file PASS
tion/ |[on file can be password as information after is a plain file
Decry converted back [encryption for decryption as before | choosing to
ption into original decryption, the encryption open with
file when given [information should notepad the
the correct be the same after description
password decryption as it was looks different
before encryption than the actual
encrypted file
However with
Microsoft
Word it works
fine.
Encryp | Decrypti | User-chosen Decryption should Does not let the Gives an error -
tion/ |on file converted generate a new file decryption occur as | that decryption
Decry into that is the passwords used | could not
ption human-readabl | human-readable but | for encryption and | happen
e file but NOT [has information decryption are NOT
the original different from the the same.
when given original file before
incorrect encryption
password
(generates text
but not what
was given by
user)
Encryp | Decrypti | Error is Should give an error | Gave an error when PASS

Group #7, Page #17

tion/ |[on generated when | when a non-PDF file | a non-PDF file was
Decry incorrect file is chosen chosen
ption type is chosen

(non-PDF)
Produc | Display | Pops up screen | Should pop up a Gives a message Message PASS
t decrypte | for user that screen that shows the | saying that shows that
Displa |d shows the file location of the decryption occurred | decryption has
y docume | decrypted decrypted document | successfully and occurred along
Mode | nts document after where the file is with the file

decryption located path

occurs
Produc | Display | Pops up screen | Should pop up a Gives a message Message PASS
t QR for user that screen with a QR saying that shows that
Displa | code shows the QR | code on it after encryption occurred | encryption
y code generated | encryption successfully and was successful
Mode after encryption where the file is along with file

occurs located path for pdf

after it has
been saved

Genera | Lack of | Application Application should Application does Lexperienced | PASS
1 crashes | does not crash | not crash not crash no crashes
behavi during the
ors course of

testing
Genera | Applicat | Users can No errors should No errors occurred | Download was PASS
1 ion download the occur during the during download fast and easy
behavi | installati | Papertrail download with no errors
ors on application

without any

errors caused

by the program

(only user-side

errors like

storage)
Genera | Applicat | User can open | Should allow the user | Doesn’t cause any | Functions as PASS
1 ion able | and close the to close the problems when expected
behavi | to run application application without closing the
ors without any any problems application

errors (can

double-click to

open and X

button in top

Group #7, Page #18

right closes
application)

5: Conclusion

In the end, our team set out to create a secure way for people to transform digital
information into a physical medium to ensure its safety, and that is what we have done. Over the
course of development, we have learned many things. Not only all of the technical knowledge
required to implement such encryption and decryption schemes, but also how to polish and
market such a product for practical use. This has been a great learning opportunity for all
members involved, as many of us learned a variety of skills during the course of development.

We have succeeded in creating a proper encryption and decryption application that can be
used to securely store information over a physical medium, such as a piece of paper. While not
all of the features we wished for could be implemented, this is something that can be iterated on
in future versions of the program as we will get to later.

5.1: Comparison to Competition

Our application Papertrail has succeeded in surpassing our competition Paperback in a
variety of ways. First, due to the nature of information being encrypted using Papetrail, we do
not require multiple key parts to be generated. This reduces the likelihood that vital information
will be lost, as the user only has to worry about one document and password instead of many.
Second, Papertrail uses a Fernet encryption and decryption scheme, which is known for being
very strong. Paperback on the other hand does not, so if malicious actors assembled all key parts,
your information would be compromised. Papertrail also has a very easy-to-use UI, which allows
for many more people to utilize our application over Paperback.

5.2: Operational Challenges

During the development of this application, we did run into a few challenges. First, some
of the features we wanted to implement couldn’t be implemented. For example, due to the nature
of Fernet encryption and decryption, there is no way to have any key be used for decryption.
This is because Fernet uses symmetric key encryption, so the key has to be the same for
encryption and decryption. Utilizing an asymmetric key scheme would allow for greater
protection, as it would mitigate a vulnerability within the program that allows malicious actors to
gain access to your information via combination testing (brute force, dictionary, etc). Second, the
large degree in technical abilities among the group led to some confusion at times regarding the
functionality and behavior of the application, which led to misunderstanding at times. Much of
this was remedied through open communication both at meetings and over online

Group #7, Page #19

communications, but still was a hurdle for the team as a whole. Third, our team utilized a variety
of outside libraries that we were unfamiliar with, so there was a slower start to development. As

we had to understand the complexities of our dependencies before we could properly implement
them, this led to some timeline problems that were thankfully addressed.

5.3: Concepts for Future Improvements

We would like greater security and data density in future iterations of the application. On
the security side, doing a rewrite that would allow any password to decrypt the file would
remove the vulnerability previously mentioned. Of course, this incorrect decryption password
would not give the original file’s contents, but instead random garbage that would be
meaningless to an attacker. On the data density side, allowing multiple QR codes to be generated
would allow for greater data density. Currently, we can hold up to 2143 bytes per page due to the
limitations of v40 QR codes, but allowing for multiple QR codes to be generated would allow for
greater information storage capabilities. So long as you had enough paper, you could
hypothetically store whatever you wanted securely and easily.

6: References

(include anything used in the writing of this report that was NOT made by me (connor))

6.1: Appendix (Code)

Files in ZIP folder:
e PaperTrail-v0.1.0-win_x64.exe: Windows EXE of papertrail-gui with all dependencies
bundled in
e PaperTrail-v0.1.0-linux_x64: Linux binary of papertrail-gui, bundles all Python
dependencies but requires poppler-utils and zbar/libzbar to be installed on the system
e papertrail-gui/: Package containing the frontend code of the project
o src/papertrail-gui/papertrail-gui.py: papertrail-gui module, contains the frontend
written in tkinter
o resources/: Directory with resources that the application depends on, namely
poppler and zbar dlls to be included in the pyinstaller generated exe
o *.spec: Pylnstaller spec files to build the binaries for the platform in the filename.
The Pylnstaller executables can be generated by installing the dependencies in
requirements.txt and then running pyinstaller <platform>.spec
o requirements.txt: Contains the dependencies for the GUI application, including
importing the papertrail package
e papertrail/: Package containing the backend code of the project
o src/papertrail/papertraildocument.py: papertraildocument module, contains the

Group #7, Page #20

PaperTrailDocument class that holds most program logic, including encryption,
pdf generation, and decryption

o src/papertrail/papertraildriver.py: papertraildriver module, contains the
PaperTrailDriver class with functions that abstract usage of the
PaperTrailDocument class, allowing that class to be more modular and extensible,
this is the module that papertrail-gui imports

o pyproject.toml: packaging configuration file that holds package information and
dependencies, allows the package to be installed with pip from the GitHub
repository

ZIP folder link

https://drive.google.com/file/d/1qL66J60J3QtVDKRkC7dMjhQi_KdIVXAh/view?usp=sharing

	Preface: List of Figures
	1: Introduction
	1.1: Problem Statement

	2: Use Cases
	Figure 1: Use Case Diagram
	2.1: User Interface
	Figure 2: User Interface

	2.2: Use Case Scenarios
	Figure 3: Use Case Scenario

	3: Requirements
	3.1: Functional Requirements
	3.2: Usability Requirements
	3.3: Implementation Requirements
	3.4: Dependencies

	4: Application Design
	4.1: Application Technical Structure
	Figure 4: Package Diagram
	Figure 5: Block Definition Diagram

	4.2: User Interface Behavior
	Figure 6: Labelled User Interface
	Figure 7: State Machine Diagram
	Figure 8: Behavior Flow Chart

	4.3: Testing Procedure and Results

	5: Conclusion
	5.1: Comparison to Competition
	5.2: Operational Challenges
	5.3: Concepts for Future Improvements

	6: References
	6.1: Appendix (Code)

