
Group #7, Page #1

Papertrail (Encrypted File Storage using Paper Application)

Team #7: Benjamin Catts, Mohammad Qasimi, Hooman Moridzadeh, Sohal
Sudheer, and Connor Wadlin

Group #7, Page #2

Table of Contents

Preface: List of Figures..3
1: Introduction..4

1.1: Problem Statement..4
2: Use Cases.. 4

2.1: User Interface... 6
2.2: Use Case Scenarios...6

3: Requirements..6
3.1: Functional Requirements..7
3.2: Usability Requirements.. 7
3.3: Implementation Requirements..7
3.4: Dependencies..8

4: Application Design...8
4.1: Application Technical Structure... 8
4.2: User Interface Behavior..10
4.3: Testing Procedure and Results..13

5: Conclusion.. 17
5.1: Comparison to Competition... 17
5.2: Operational Challenges.. 17
5.3: Concepts for Future Improvements.. 18

6: References...18
6.1: Appendix (Code).. 18

Group #7, Page #3

Preface: List of Figures

Figure 1: Use Case Diagram​ 5
Figure 2: User Interface​ 6
Figure 3: Use Case Scenario​ 7
Figure 4: Package Diagram​ 10
Figure 5: Block Definition Diagram​ 11
Figure 6: Labelled User Interface​ 12
Figure 7: State Machine Diagram​ 13
Figure 8: Behavior Flow Chart​ 14

Group #7, Page #4

1: Introduction

​ For our project, we developed a secure way to take digital information and transform it
into an encrypted physical medium and back again. Regardless of the application, this program
allows users to take information from their electronic device and convert it into a QR code
containing their data in an encrypted form. This QR code can be run through the program later to
be unencrypted, so long as the password given is the same as during the encryption.

​ We set out to create a secure, simple, and smart way of taking information from a
computer into the real world and that is what we’ve done! Now you do not have to worry about
your personal information being stolen from your computer as you can keep all of your most
important information in a physically secure place, like a lockbox in a bank.

1.1: Problem Statement

​ Some people have a desperate need to back up small amounts of sensitive data long-term
and wish to do so securely. In the modern age, encrypting documents with important personal
information such as bank information, passwords, and such has become a critical aspect of
keeping your information safe, yet there are not many ways to do this. This is where we come in,
as we offer a way to keep all of your most important information safe in an easy-to-use and
simple-to-store manner. All you have to do is take your document, run it through the program,
download the generated QR code, and print it out!

2: Use Cases

​ As our application is designed with ease of use in mind, users are only expected to be
familiar with locating a file within their computer, printing files from a computer, and scanning
QR codes. No need to spend years studying computers, this application does all of the hard work
for you!

​ This application works in both Windows and Linux environments, so as long as the user
has one of those types of devices it should work perfectly.

Group #7, Page #5

Figure 1: Use Case Diagram

Group #7, Page #6

2.1: User Interface

Figure 2: User Interface

2.2: Use Case Scenarios

Group #7, Page #7

​

Figure 3: Use Case Scenario

3: Requirements

​ We have broken down our requirements into multiple categories to make everything as
clear as possible regarding what this application does.

Functional requirements are the processes that the program must be able to do. Functions
such as encryption, decryption, key generation, and more are included in this section.

Group #7, Page #8

Usability requirements are the aspects of the application with which the user can interact
with. Being able to input a file, type in a password, and more are included in this section.

Implementation requirements are the technical backends required for the application to

run properly. Having the proper version of Python, being able to run HTML, and such are
included in this section.

Dependencies are parts of the code that are required for the application to run properly.

There are a variety of libraries brought in to perform specific tasks that are included in this
section.

3.1: Functional Requirements

-​ Able to turn files into password-encrypted data encoded in a series of QR codes exported
in an easily printable format

-​ Able to, using a scan of the series of QR codes in the easily printable format mentioned in
the previous requirement, be able to decode the QR codes back into data that can then be
decrypted with the same password

-​ The program can take in any standard binary or ASCII file data
-​ If a file is encrypted and turned into a printable format by the program and then that

printable-format file is run through the program, scanned, and decrypted, the data
returned must be binary equivalent to the original file

3.2: Usability Requirements

-​ Has both encryption and decryption options available to the user
-​ Has clear instructions such that a user can easily tell the functionality of the program

-​ This means that a user can visually tell what actions are required, not an actual
instructions manual

-​ User can select a file from their file explorer using the provided button without having to
trace the whole path

-​ An encrypted file with the QR code will be provided to the user and it will be clear when
this has been done through a visual representation via a new window pop-up

-​ User can select a QR code and have the data scanned such that decryption can occur
using the provided password

-​ A downloadable file will be provided to the user once decryption is finished using the
correct password through a pop-up message.

-​ Any errors throughout the program will be made known to the user through a visual
representation

3.3: Implementation Requirements

Group #7, Page #9

-​ Platforms: Windows [Windows 11 x86_64], Linux [Fedora Silverblue x86_64 (uses GNU
libc)]

-​ Language(s):
-​ Python 3.9
-​ HTML/CSS
-​ Javascript

3.4: Dependencies

-​ Eel (PyPI) (Docs) - UI framework, allows UI to be written in HTML/CSS/JS while still
operating offline

-​ qrcode (PyPI) (Docs) - Allows us to generate QR codes
-​ pillow (PyPI) (Docs) - Adds more functionality to qrcode, lets us work with

image data to combine codes onto one nicely formatted page, and allows for
export as PDF

-​ cryptography (PyPI) (Docs) - A high-level library for encrypting and decrypting
data, can be used to encrypt data using Fernet symmetric encryption, also contains
PBKDF2HMAC for turning user-provided password into Fernet keys

-​ base64 (builtin) - A way to encode binary data into ASCII characters, a necessary
dependency for key derivation from the encryption password

-​ pyinstaller (PyPI) (Docs) - Allows the application to be packaged as a standalone
executable so that end users don’t need Python installed or to run the program
from the command line

4: Application Design

​ During the creation of the application, design was something we wanted to ensure was as
easy for people to use as possible while still accomplishing all of our tasks. As different aspects
of the overall design were handled in different ways, we have chosen to break up the overall
design into multiple components.

The first section regards the technical backend, in which we detail the dependencies,
files, and functions of the application. This can be seen in Figures 4 and 5, in which we illustrate
what makes up the application and what each part does.

The second section regards the UI and what the user should expect to see during the use
of the application. This is illustrated in many ways, including Figure 6 where we show off the UI
and its features, Figures 7 and 8 with how the application works based on user input, and our
extensive table of tests regarding the functionality of the program.

4.1: Application Technical Structure

​ Our GUI imports three different objects, the OS library, the Tkinter library, and our PaperTrail
driver file. Our driver file imports many other libraries and our PaperTrail document file to encrypt and

https://pypi.org/project/Eel/
https://pypi.org/project/Eel/
https://pypi.org/project/qrcode/
https://pypi.org/project/qrcode/
https://pypi.org/project/pillow/
https://pillow.readthedocs.io/en/stable/
https://pypi.org/project/cryptography/
https://cryptography.io/en/latest/
https://pypi.org/project/pyinstaller/

Group #7, Page #10

decrypt based on our user’s request. Our document file imports some other libraries, but this time to
generate the PDFs and other background work required to allow the user to access their files. The GUI
keeps everything simple so that the user can just get what they want done without having to deal with the
extra work.

Figure 4: Package Diagram

​ The body of our application is broken into three main blocks based on the three files we
use to perform the required tasks. As this application was designed with ease of use in mind,
each of the blocks simply flow from one to another to process all of the different aspects
required to provide the user with the safety they desire. Within each block is a list of the
important functions that occur within, which helps to further illustrate what each block does and
how they come together to create the finished file.

Group #7, Page #11

Figure 5: Block Definition Diagram

4.2: User Interface Behavior

​ We have created a labeled version of our UI that shows the main screen as well as some
of the smaller pop-up windows the user may encounter. On the main screen, we have buttons that
allow the user to select a file, either for encryption or decryption. Once the user has selected a
file using one of the provided buttons, there is a text box below used to type in the password that
will be used for encryption or decryption respectively. Once a file has been chosen and a
password has been entered, there are buttons that the user can click to simply encrypt or decrypt
the provided file using the provided password.
​ Below the main window are three different pop-up windows. The first two on the left
illustrate successful encryption and decryption respectively, while the rightmost one shows the
error screen. The error screen is the same for encryption and decryption, with the only difference
being the text regarding whether the file could not be encrypted or decrypted. All three of these
windows have an “OK” button used to close the window as well as an “X” in the top right
corner.

Group #7, Page #12

Figure 6: Labelled User Interface

​ Illustrated below are the different states that the application goes through during normal
operations. First, the application is launched and the main window is opened. This starts the Data
Entry Mode, in which data can be input by a user. This state will remain until a call to encrypt or
decrypt is made. If a call to encrypt a file is made, the application moves into Encryption Mode
and performs the relevant tasks within. Depending on the outcome of the encryption, a message
either stating the success or failure of the encryption will be provided as the application moves
back into the Data Entry Mode. If a call to decrypt is made instead, a very similar process occurs
as encryption, in which the Decryption Mode will start and all relevant tasks within are done.
Again, depending on the outcome of the decryption, a message either stating the success or
failure of the decryption will be given as the application moves back into the Data Entry Mode.
This can occur however many times the user wants until the application is closed, in which the
application no longer can do anything and will shut down.

Group #7, Page #13

Figure 7: State Machine Diagram

Group #7, Page #14

​ Below is a flow chart of what a user may expect to see as they use the application. It is
very similar in description to the previous diagrams, as the screens the user sees are the different
states and messages displayed after returning to the Data Entry Mode.

Figure 8: Behavior Flow Chart

4.3: Testing Procedure and Results

​ We created a vigorous and extensive set of tests to ensure that our program did everything
we expected it to do. While not all tests were successful, these tests were based on previous
requirements that were no longer to be upheld due to technical limitations, such as the ability to
decrypt a file using an incorrect password and have it generate a file. Tests were created through
a thorough investigation of the code, diagrams, and previous documentation to ensure that all
functions, requirements, and features were working as intended. The tests were carried out on
multiple different devices to ensure all features worked across operating systems. Adjustments
were made after the tests were completed to ensure accuracy in what we are providing as a
service, as we did not want to mislead anyone with outdated claims.

Group #7, Page #15

State Functio
n

Description of
test

Expected Outcomes
(before execution)

Actual Outcomes
(after execution)

Comments (if
applicable)

Test Results
(pass or fail)

Data
Input
Mode

Select
File

User is able to
select a file and
have it be the
one used

Can select a file and
the selected file is
used

Successfully able to
select file and have
it be used

Works fine PASS

Data
Input
Mode

Select
File

User can select
any sort of
standard binary
or ASCII file

Any standard binary
or ASCII file can be
selected and used

Couldn’t find a
filetype that would
cause any problems

Works fine PASS

Data
Input
Mode

Type
Passwor
d

User can type
in the box any
amount of
characters
equal to or
above 12.

Allows for any
combination of
characters to be a
password so long as
they are equal to or
above 12 characters
total

Takes any
characters in a
string 12 or longer
and uses it as a
password

Works fine PASS

Data
Input
Mode

Type
Passwor
d

Generates an
error if the
password is
less than 12
characters long

Gives an error and
makes the user put in
a longer password

Does give the error
we were expecting

Works fine PASS

Destin
ation
Selecti
on

File
location

User can select
the location of
where they
want their file
to go and the
file actually
goes there

User can locate a file
location and the file
will go there

File goes to the
chosen file location

Works fine PASS

Destin
ation
Selecti
on

Name
file

User can
choose to
change the
generated name
to any filename
so long as it fits
their OS’s file
syntax

File generated should
be PDF after the user
changes the name

It works fine,
however. The
generated name
saved as a PDF file
but when I changed
the name of the file
it saved as a plain
file without any
specific type
doc,pdf..etc

 FAIL

Group #7, Page #16

Encryp
tion /
Decry
ption

Encrypti
on

User chosen
file is actually
encrypted and
unable to be
converted into
plaintext
without use of
decryption

Encrypted file when
open using a text
editor is not
human-readable

Gives you a bunch
of weird symbols
that are not
human-readable
(did actually
encrypt the file)

Great, works
fine

PASS

Encryp
tion /
Decry
ption

Decrypti
on

User chosen
file can be
decrypted
regardless of
password into
human-readabl
e text

Password given for
decryption should
decrypt the file into
human-readable text

Decryption does not
work without typing
the same password
as was used for
encryption

Generates an
error message

FAIL

Encryp
tion /
Decry
ption

Decrypti
on

User-chosen
file can be
converted back
into original
file when given
the correct
password

When given the same
password as
encryption for
decryption, the
information should
be the same after
decryption as it was
before encryption

Gives the same
information after
decryption as before
encryption

Decrypted file
is a plain file
choosing to
open with
notepad the
description
looks different
than the actual
encrypted file
However with
Microsoft
Word it works
fine.

PASS

Encryp
tion /
Decry
ption

Decrypti
on

User-chosen
file converted
into
human-readabl
e file but NOT
the original
when given
incorrect
password
(generates text
but not what
was given by
user)

Decryption should
generate a new file
that is
human-readable but
has information
different from the
original file before
encryption

Does not let the
decryption occur as
the passwords used
for encryption and
decryption are NOT
the same.

Gives an error
that decryption
could not
happen

FAIL

Encryp Decrypti Error is Should give an error Gave an error when PASS

Group #7, Page #17

tion /
Decry
ption

on generated when
incorrect file
type is chosen
(non-PDF)

when a non-PDF file
is chosen

a non-PDF file was
chosen

Produc
t
Displa
y
Mode

Display
decrypte
d
docume
nts

Pops up screen
for user that
shows the
decrypted
document after
decryption
occurs

Should pop up a
screen that shows the
file location of the
decrypted document

Gives a message
saying that
decryption occurred
successfully and
where the file is
located

Message
shows that
decryption has
occurred along
with the file
path

PASS

Produc
t
Displa
y
Mode

Display
QR
code

Pops up screen
for user that
shows the QR
code generated
after encryption
occurs

Should pop up a
screen with a QR
code on it after
encryption

Gives a message
saying that
encryption occurred
successfully and
where the file is
located

Message
shows that
encryption
was successful
along with file
path for pdf
after it has
been saved

PASS

Genera
l
behavi
ors

Lack of
crashes

Application
does not crash
during the
course of
testing

Application should
not crash

Application does
not crash

I experienced
no crashes

PASS

Genera
l
behavi
ors

Applicat
ion
installati
on

Users can
download the
Papertrail
application
without any
errors caused
by the program
(only user-side
errors like
storage)

No errors should
occur during the
download

No errors occurred
during download

Download was
fast and easy
with no errors

PASS

Genera
l
behavi
ors

Applicat
ion able
to run

User can open
and close the
application
without any
errors (can
double-click to
open and X
button in top

Should allow the user
to close the
application without
any problems

Doesn’t cause any
problems when
closing the
application

Functions as
expected

PASS

Group #7, Page #18

right closes
application)

5: Conclusion

​ In the end, our team set out to create a secure way for people to transform digital
information into a physical medium to ensure its safety, and that is what we have done. Over the
course of development, we have learned many things. Not only all of the technical knowledge
required to implement such encryption and decryption schemes, but also how to polish and
market such a product for practical use. This has been a great learning opportunity for all
members involved, as many of us learned a variety of skills during the course of development.
​ We have succeeded in creating a proper encryption and decryption application that can be
used to securely store information over a physical medium, such as a piece of paper. While not
all of the features we wished for could be implemented, this is something that can be iterated on
in future versions of the program as we will get to later.

5.1: Comparison to Competition

​ Our application Papertrail has succeeded in surpassing our competition Paperback in a
variety of ways. First, due to the nature of information being encrypted using Papetrail, we do
not require multiple key parts to be generated. This reduces the likelihood that vital information
will be lost, as the user only has to worry about one document and password instead of many.
Second, Papertrail uses a Fernet encryption and decryption scheme, which is known for being
very strong. Paperback on the other hand does not, so if malicious actors assembled all key parts,
your information would be compromised. Papertrail also has a very easy-to-use UI, which allows
for many more people to utilize our application over Paperback.

5.2: Operational Challenges

​ During the development of this application, we did run into a few challenges. First, some
of the features we wanted to implement couldn’t be implemented. For example, due to the nature
of Fernet encryption and decryption, there is no way to have any key be used for decryption.
This is because Fernet uses symmetric key encryption, so the key has to be the same for
encryption and decryption. Utilizing an asymmetric key scheme would allow for greater
protection, as it would mitigate a vulnerability within the program that allows malicious actors to
gain access to your information via combination testing (brute force, dictionary, etc). Second, the
large degree in technical abilities among the group led to some confusion at times regarding the
functionality and behavior of the application, which led to misunderstanding at times. Much of
this was remedied through open communication both at meetings and over online

Group #7, Page #19

communications, but still was a hurdle for the team as a whole. Third, our team utilized a variety
of outside libraries that we were unfamiliar with, so there was a slower start to development. As
we had to understand the complexities of our dependencies before we could properly implement
them, this led to some timeline problems that were thankfully addressed.

5.3: Concepts for Future Improvements

​ We would like greater security and data density in future iterations of the application. On
the security side, doing a rewrite that would allow any password to decrypt the file would
remove the vulnerability previously mentioned. Of course, this incorrect decryption password
would not give the original file’s contents, but instead random garbage that would be
meaningless to an attacker. On the data density side, allowing multiple QR codes to be generated
would allow for greater data density. Currently, we can hold up to 2143 bytes per page due to the
limitations of v40 QR codes, but allowing for multiple QR codes to be generated would allow for
greater information storage capabilities. So long as you had enough paper, you could
hypothetically store whatever you wanted securely and easily.

6: References

​ (include anything used in the writing of this report that was NOT made by me (connor))

6.1: Appendix (Code)

​ Files in ZIP folder:

●​ PaperTrail-v0.1.0-win_x64.exe: Windows EXE of papertrail-gui with all dependencies
bundled in

●​ PaperTrail-v0.1.0-linux_x64: Linux binary of papertrail-gui, bundles all Python
dependencies but requires poppler-utils and zbar/libzbar to be installed on the system

●​ papertrail-gui/: Package containing the frontend code of the project
○​ src/papertrail-gui/papertrail-gui.py: papertrail-gui module, contains the frontend

written in tkinter
○​ resources/: Directory with resources that the application depends on, namely

poppler and zbar dlls to be included in the pyinstaller generated exe
○​ *.spec: PyInstaller spec files to build the binaries for the platform in the filename.

The PyInstaller executables can be generated by installing the dependencies in
requirements.txt and then running pyinstaller <platform>.spec

○​ requirements.txt: Contains the dependencies for the GUI application, including
importing the papertrail package

●​ papertrail/: Package containing the backend code of the project
○​ src/papertrail/papertraildocument.py: papertraildocument module, contains the

Group #7, Page #20

PaperTrailDocument class that holds most program logic, including encryption,
pdf generation, and decryption

○​ src/papertrail/papertraildriver.py: papertraildriver module, contains the
PaperTrailDriver class with functions that abstract usage of the
PaperTrailDocument class, allowing that class to be more modular and extensible,
this is the module that papertrail-gui imports

○​ pyproject.toml: packaging configuration file that holds package information and
dependencies, allows the package to be installed with pip from the GitHub
repository

​ ZIP folder link

https://drive.google.com/file/d/1qL66J60J3QtVDKRkC7dMjhQi_KdIVXAh/view?usp=sharing

	Preface: List of Figures
	1: Introduction
	1.1: Problem Statement

	2: Use Cases
	Figure 1: Use Case Diagram
	2.1: User Interface
	Figure 2: User Interface

	2.2: Use Case Scenarios
	Figure 3: Use Case Scenario

	3: Requirements
	3.1: Functional Requirements
	3.2: Usability Requirements
	3.3: Implementation Requirements
	3.4: Dependencies

	4: Application Design
	4.1: Application Technical Structure
	Figure 4: Package Diagram
	Figure 5: Block Definition Diagram

	4.2: User Interface Behavior
	Figure 6: Labelled User Interface
	Figure 7: State Machine Diagram
	Figure 8: Behavior Flow Chart

	4.3: Testing Procedure and Results

	5: Conclusion
	5.1: Comparison to Competition
	5.2: Operational Challenges
	5.3: Concepts for Future Improvements

	6: References
	6.1: Appendix (Code)

